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Abstract

We describe a computationally efficient nearly-optimal Bayesian algorithm to estimate rain
(and drop-size- distribution) profiles, given aradar reflectivity profile at a single attenuating
wavelength. The algorithm also calculates the ran. s, uncertainty in its estimates. We also
describe amore general algorithim that can make estimates based 011 a radar reflectivity
profile together with an approximate measurement of the path-integrated attenuat ion, or a
radar reflectivity profile and a set of passive microwave brightness temperatures.




1 Introduction

It is well-documented (Hitschield and Bordan 1954, Meneghini 1978, addad ct a 1993) that
there are significant ambiguities inherent in the determination of a  articular vertical rain
intensity profile from a given time profile of radar echo powers measured by a downward
looking (spaceborne or airborne) radar at a single attenuating frequency. -Jndeed, in addition
to deriving the formulas that generate al deterministic mutually ambiguous rain rate profiles
from a given profile of received radar reflectivit its, we have also produced (lHaddad et al
1993) a quantitative mncasure to assess how likely cach of these deterministic profiles is,
what the appropriate “average>’ p rofile should be, and what the “variance™ of these multiple
solutions is. i order to do this, we formalized the stochastic constraints that allow us to
make senise of the words “average” and “variance” in a mathematically rigorous way. 11 e
quantitative approach we then took to estimate the rain would be particularly well-suited
for such systeins as the spaceborne Ku-band Precipitation Radar of the Tropical Rainfall
Measuring Mission (‘'TRMM), if it were more efliciently impleament able in real-time. Indeed,
our stochastic approach had so far relied on calculating the full density function for the rain
variables conditioned on the radar observations in order to estimate the rain. The resulting
algorithm was very cumbersome and computationally intensive. T this work, we present a
new extended-Kalman algorithin to calculate the first and seconid moments of the density
function dircctly., We also extend the approach to account for other observations such as one
additional rain-modified surface-refl cctivity measurement, or multiple-mi crowave- frequency
radiometer measurenents.

2 Mathematical approach

For simplicity, we start with the model that the effective reflectivity p(r), mcasured at range
r by a downward-looking mono-static narrow-band radar suct 1 as the TRMM Precipitation
Radar, is proportional to the reflectivity coeflicient 7 of the rain at range r, and to the
accumulated attenuation from range O (the top of the cloud) to range r. Calling k(7) (resp.
R(7))the attenuation coefficient (resp.rainrate) at range r, we assume for simplicity that
7 = al?t and k = o’ {or some value of the parameters a, b, o and 3, and that the calibrated
reflectivity is therefore given by

p(r) = (1]?(7‘)1/10- 01(2 5 oh(1)"dt) D




Treating a, by v and 3 as parameters, the solution to cquation (1) can be written as

Ry - - - p(r)H® - s (2)
UL B PO

Iiquation (2) suggests that if the rain parameters are notknown exactly, mull iple solutions for
R can exits. In(Haddad et a 1993), we describe just how utually ambiguous these multiple
solutions can get. In the same paper, we aso show that using the surface returnas a reference
dots not solve the ambiguity problem. Since one hasto “(iiV e with” these ambiguities, it is
very important to know how likely cach of the multiple solutions is: specifically, given some
a-priori “statistical” constraints on the variables involved, one would like to find what the
“average” solutionto (2). Using average values for the rainparamet ers is still not suflicient
hecause even when exact values for o, b, @ and 3 are given, it is known that the numerical
iimplementation of cquation (2) gives a numerically unstable “inversion” algorithm,

Thus one is naturally led to a stochastic filtering approach. Onc would like to introduce
a “measurc” on the set of all ambiguous profiles giving rise to the same measured reflectiv-
ity profile, and try to find the “average” profile with respect to this measure on this set,
along with an estimate of the mean difference between the micimbers of this set of mutually
ambiguous profiles. In (Haddad et al, 1993), we described an algorithin to compute the
joint probability density function ‘P for { (), o, b, o, 3} given mcasurcments of p(r). The
“average” rain profile and the “mean deviation” with all the mutually ambiguous profites
can then be obtained from the moments of P.Indeed, the results reported in (Haddad et al,
1 993) have beenvery encouraging. In particular, inthe case where 0, b, @ and 3 arc assumed
known, this approach yields a stable inversion algorithm which docs not require any surface
reference information. But calculating the full density function requires large amounts of
cot nputer m cemory and CPU time, too large to make the algorithin useful in anywhere near
real-time. I order to reduce the amount of computer resources required, rather than calcu-
lating P itsclf; one can try to compute its mean and covariance dircctly. This amounts to
deriving the extended Kaliman filter appropriate to the p roblem at hand. We now describe
how this is done.

Iirst, we need to specify the a-priori constraints 011 the “state variables” 1(r), a, b, «,
B and e(r) = fJ alt?. Vor simplicity, we shall assume that «, b, a and 3 are constant, that
the only constraint on ¢ is that it be the integral with respect to » of aff(r)?, and we express
the requirement that 12 itself be positive and continuous by writing

R(r)= N 3

wherer is the (mmathematically) simplest continuous stochastic process and A a suitable
factor (possibly zero) to be determined. Specifically, without further a-priori information.




we assume that z(r) = 2(0) -+ ob(r), where 2(0) and b(r) are independent, x(0) itself is
Gaussian with mean nip and variance 0§, and the process b(r) has independent 0-mean
(Gaussian increments with variance equal to the extent inrange of the increment interval,
Thus, in effect, we are assuming that the a-priori constraints on the evolution of log(/2) with
range r arc those of standard Brownian motion, up to a possible “drift” term Ar.

Now that wc have established the a-priori constraints on the dynamics of our variables,
we must make explicit the function h{r) expressing our mecasurement from range r in terms
of our state variables. I'roin equation (I), one can sece that

h(r) = log(a) 4 b(a(r) + Ar) - 0.21og(10)e(r) -4 Noise, (1)

Let us write oy for the r. m.s. noise level inthe measurements, which, for simplicity, we
shall attribute here to Rayleigh fading only (system noise can be  akeninto account, at the
expense of making the exposition somewhat more cumbersome). Since our data consist of
the averaged power of A independent pulses, tile noisc termin (4) would be thelogarithin
of theaverage of the squared-magnitudes of M independent stan dard cornplex Gaussian
variables. Hence, as soon as M > 4, it is quite reasonable to assume that thisnoise term is
itself approximately a 0-mean normal variable with variance % >~ 1;M.

We arc now ready to apply the standard inachinery of stochastic filtering to obtain
the best estimate 12(r) of tile rain rate at range r given all the observations. Since the
relation de/dr = o IR is non-lincar, we cannot use a straightforward Kalman filter to solve
the problem. We chose to use an extended Kal man filter approach, using a first-order Taylor
series linea rization to obtain both the dow nward estimate (starti ng from the top of the cloud
r= 0) and the upward estimate (starti ng from the ocean surface). The theory and details
behind the technique can be found for example in Oksendal, 1985, or Jazwinski, 1970. For
cornpleteness, we summarize the flow of the particular algorithminthe case a hand, when
the parameters @, b, a and 3 are assumed known.

Iirst, one must obtain “downward” est imates 2q4(r) and éq(r) of the state variables
and c at al ranges r based onall carlier mcasurements obtained for v’ < r, along with their
covariances py,. (1), per () and p. (7). To do this, one must start with

24(0) = mg (
ca(0) = () (
Pee(0) = 0O (7)
per (0) = 0 (8)
pra(0) = 0. (

Thien, given our estimates at range r, the estimates at range » 4 é can be obtained in two
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steps, by first accounting for the changes in the dvnamics using the formulas

a(r46) = 2q(r) (lo)
reté .
o(rd6) = éq(r) (n/ HEOA gy (12)
Par(r 4 6) = pu(r) 4 028 (12)
40 .
ﬁc.r(r - 6) = Per (7) J (1/3/ (l'j(g(tHM)Pa‘f(i)(/l (]3)
‘ ,1 r4é
Pec(r 4 6) = pee(r) A 2(1‘/,‘1/ ("'{("“HM[)m.(i)(li, (14)

then by accounting for the measurement z(r+4 é) obtained from range 7+ é usi ng the formulas

; . by (1 4 6) - 0.210g(10)pe (4 6)
e b ) = (e )y o4O ])g( Ve (

bpes (14 6) - 0.21og(10) e (7 -l 5)

A (15)

Ca(r 4 &) = ¢(r+4 8) A A (16)
where 1 = (0.21og(10))2pec(r + 8) - 2(0.21og(1 0))bpe,(r + &) + bp,, (r 4 &) + 0%, and
A:=z(r+48) - (log(a) +0(2(r46) + Ar) - 0. 21 0og (10) &(r + 8)) measure the amount by which
{ he observation that would correspond to the preliminary estimates @ and ¢ differs from t he
actual measurement.

The upward portion of the algorithim, to obtain “upward” estimates ,(r) and é,(r)
of the state variables @ and ¢ at all ranges r based on all further measurements obtained
for »
necessary. One must then combine downward and upward estimates to obtain the optimal
estimates & and ¢ based 011 all the reflectivity data. This is done using the formula

-1 % ¢
( ) = (Bt ) (1’;‘ ( iy ) g ( N )) (17)

al every range p, with £2 denoting the appropriate covariance Illat7’ices (we have tacitly
assuined that al variables arc evaluated at the samerange r). The optimal estimate 12,444, (r)
of the rain rate itself is then given by the m can £ A which, since a itsell is Brownian,

> p, proceeds in a similar fashion, except for the obvious sign changes that are then

2> o

hecomes

]Afmdm-(r) = (T4 05paa ()4 Ar (18)

and its r.m.s. uncertai nly 0,444, (1) by

Ov'adar(r) - ]A{rad(u (’) ' \/;1]'“(7‘) -1 (]9)
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As expected, the resulting algorithim turns out to be orders of magnitude more efficient
than the full density function approach described in (Haddad ¢t al, 1993). Before discussing
the practical applications, we still need to describe how one specifies values for the parameters
mo, 00y o and A. Although, as we shall see, in practice, the exact values do not aflect the
estimation algorithm significantly (after al, when a, b, ¢ and 3 arcknown,the theorctical
solution is unique), one should certainly try to give them at least physically reasonable
values. “1'0 do that, we use the a-priori constraints which we have imposed. It follows {rom
(3) thatthe expected value of the *ail)-rate 12(0) atl the top of the raincolumn is

E{R(0)} = "otz (20)

and its relative variance is

12(0) ey o
"{(k{n(on ) } ey .

In practice, we set a minimum “threshold onset” value R,,.;, for the smallest significant ran
rale wc expect at the top of the rain column, along with some estimate for the associated
mean relative uncertainty. Iiquation (21) thenimplies that we should choose

2
o2 = log (f{]/{fz(()) }> (22)

Tran
and (20) inturnimplies that we should then chioose

mo = log(Rin) - 21208 (23)
The choice of A is somewhat more problematic. We do know that, a priori, by definition, the
rainrate should initially increase with range from the a-priori value f6.in- This would imply
apositive drift A, ‘1’0 get a value for A, we look at the terminal behavior of R Writing R/(r)
for '(r) =- R(rs— ), whererg is the range of the surface, and if we reverse the constraint
(3) in time to apply it to K/(r), one finds that the “a-yoriori” (with time reversed) expected
value for B will be given by

EQR (1)} = Frdt dnatrda v ot (24)

Since we have a priori no reason to expect the rainrate to increase or decrease as one moves
up fromthe bott om of theraincolurnn,it is natural to choosc the value

1
/\:r‘*z(f2 (‘

[N
[
~—
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Last, we must decide ona value for o. In practice, this parameter controls the a priori
variation E{(x(r 46) - x(r))?*}=0%.1n fact, the average a priori rate-of-change of I} is

given by
cJ RO 8 e E{R(r A 6)}
VU orey 70 T Te(nriyy

We therefore choose an a priori value for E{R(r 4+ 6)/1(r)} and use (26) to deduce the
corresponding value of o. '

(26)

3 Applications - radar only

In practice, westarted withthe values a =255, b = .31, andthe typical Ku-band values o=
0.0285and 3 =- 1.1. ‘1’0 determine the parameters og and mg, we use equations (22)and (23),
except that rather than specifyi ng /. anditsvariance aieen,, we specify the minimum
threshold-onset reflectivity Z,.;, and its variance. Practically, weset 10 log,o(Znin) = 26
dB, so that nominally 2, = (Zmin /@) /"~ 1.4 mm/hrinour case, then weused this value
in (23), with the following values in equation (22): 02 = log(100D23)) 1 nally, for o, we
used the value given by equation (26) with E{R(r-t 1 )/R(r)} = 1.5, r in km.

To test our algorithm, we then synthesized radar reflectivity profiles starting with each
of three assuined rain rate profiles, using fadi ng noise corresponding to the average of 50
independent pulses. The three input rain rate profiles were

Profile A (linear-then-constant): therain increases lincarly from Imm/hr at range O
upto 5 mm/hr at ranger =2 km, then remains constant a 5 mm/hr until the surface
rarl gers=- 5 kin(see figure1).

Profile B (sawtooth-linear): the rainincreaseslincarly from1lmm/hr atrange O up to
25 mm/hr at range r = 2 km, then decreases lincarly down to 12.5 mm/hr at range
r= 3 ki, then back up to 25 nyn /hr at 7 = 4 ki, and finally back down to 12.5 kin
atrg =- 5 kin (sce figure 2a).

Profile C (sawtooth-linear): the rainincreases lincarly from 1 mm/hr at range O up to
75 mm/hr at ranger = 2 km, then decrcases linearly downto 37.5 mm/hr at range
r=3km,thenback up to 75 mm/hrat» = 4 kin,and finally back down to 37.5 kin
at rs=5Hkm(see figures 3a and3b).

We then supplied the synthesized reflectivity profiles as input to our algorithin to estimate
the associated rainrates. Figure 1 shows the cstimmated rain rate profile and the associated
r.an.s. uncertainty whenthe input was profile A, The est iimates are manifestly quite accurate.



We tried changing the value of Z,,;, over the interval 20 < 7, < 32 dB, with results that
were less than 1% ofl the ones infigure 1. Figure 2a shows the estimates of our algorithin
when the input profile was profile B, Figure 2b shows the est imates when E{ R(» 1 1)/ R(r)}
is increasedup to 3, and figure 2c snows the estimates when E{ R(r 4 1 )/R(»)} is given
thevalue 1.1 the effects arcsmaller than the r.m s uncertainty in the estimates. Figures
3a and 3b show what can happen at larger rain rates, specifically when the input is profile
C.The estimates in both cases are quite dose to the actual values up to arange of 3 km.
Beyond that , the algorithm begins to over- or under-est imate noticeably. The reason for the
discrepancy is that the intrinsic ambiguities in the rain -rate reflectivity-profile relation can
be quite pronounced, especially at higher rain rates. In fact, ingeneral, by changing the
rain paramecters @, b, o or 3 by small amounts, one can succeed in constructing substantially
different rain profiles that produce identical reflectivity profiles. As was shown in (Haddad
ct al, 1993), at high rain rates, the exponential contribution of these ambiguitites can grow
very quickly. Figure 3a shows our algorit him’s est imat es with the original parameter values as
above, and figure 3b shows the estimates when b is changed from 1.31 to 1.313,1.c. by ancre
0.2% ! The ambiguity is responsible for the increasing r.m.s. uncertainty in the estimates:
the algorithm recognizes that its estimates are less and less precise as the potential for
ambiguity increases with range. One conclusion that can be drawn from these ob servations
is that it would be obviously unwise inpracticeto fix values for the rain parameters a, b,
and /3, especially in cases where one expects sustai ned high ra in rates. Instead, one should
modify the model to allow these parameters to be themselves stochastic, as was done in our
previous full-density -function approach (Itaddad et al, 1993). now this can be done while
still keeping the algorithm efficient is described in the next section.

We end our radar-only test cases with measured data. Pigure 4a shows the estimated
rainrate obtained using our extended-Kalman algorithm with the original parameter values,
when the input was one of the radar reflectivity profiles imncasured by JP1.’s ARM AR radar
(1 Yurdenet al, 1992) over the Western Pacific Ocean during the TOGA-COARI experiment
011 February 4, 1993, at 15:35 local time. Details of the participation of ARMARiIin COARY
can be found in (Liet al, 1 993). Figure 4b shows our algorithim’s estimates whien the rain
parameter values were changed to a = 300, b= 1.4, o= 0.026, = 1.08. The relative
difference in the estimates increases, especially over the last two kilometers where it goes
from 100 % up to close to 300 % . I'or comparison, figure 4¢ shows the estimates obtained
using our full-density -function code (fromHaddad et a, 1 993), where we had againassumed
thata = 300, b= 1.4, o= 0.026, 4 = 1.08, The diflecrence between the two mode’]s in
the stochastic constraints on the rain rate explain the difference in the ran. s, uncertainty
values betweenthe two graphs. Otherwise, the estimates are remarkably close. Yet while
the results of our old full-density -function algorithm took several hours of computer CPU
time to produce, the estimates of the extended-Kalman algorithin took less than a second.
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We shall return to the ARMAR data in the last section in order to illustrate how
radiometer mcasurements can help determine the correct parameter values to use, and reduce
the uncertainty in the estimates.

4 Coupled DSD-based 77—/t and k--it relations

Rather than use the independent power-law 7 IR and k- R relations above, and allow the
paramcters a, b, a and 3 to vary independently, we will use more realistic coupled relations,
based on the drop size distribution (DSD). Specifically, following Ulbrich, 1983, we shall
assume

e that the DSD al range » is given by N(D;r) = No(#)D"e 200 for all 1) > 0, with
-1 <

o that Ny is related to the rainrate 12 by No(r) >~ 140R(r) A(r )74 /T (4.67 + 1), whien
D is cxpressed in mm, 2 in mm /hr, and N(D)dD innumber of drops per m?
this follows directly from the assumption that all drops are falling at their power-law
terminal velocity (see Haddad et al, 1993, for details),

o that the mass-weighted mean drop diameter, (ye - 4)/A(r), is related to the rain-rate
by a power-law (p+ 4)/A(r) = R(r)®, where the parameter § can vary over the interval
0.08 < 6 <0.23 (again, sec Haddad et al, 1994, for the details),

« that g, § and R arc a priori independent,

« and that gand é arc (for now) const ant over the rain colunm.

I 'hus we are describing the rain column by specifying the 1)S1) at every range 12, using the
rain rate profile I2(r)and two addit ional parameters, yrand 6. As stated above, we shall start
by assuming that these two additional parameters are constant over the rain column. As we
shall scelater, this simplifyi ng assumption is not crucial to the derivation of the algorithm.
Jsing this description of the rain, one canreplace the power-law 7- 12 and k- I? relations
by any more realistic physical inodel such as Mic-scattering or a T-matrix calculation. For
this paper, however, we shall stay with the simple power-law models. Under the Rayleigh
hypothesis (for Z), and using a power law to relate the total scattering cross-section of a
drop to its diameter (for k), the above assumptions produce the relations
1(7.26 -i pt)

Z = 140- J3142.598 o
1'(4.67 4 i) - (44 f1)2:59 (27)

r (5-33 +4t) 1+ 0865
e . — 1 ‘
and k= 0026 ;67 4y (@ pyene
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One can readily verify from these equations that the values («, b, a, 5) = (255,1.31,0.0285,1.1)
usced above correspond to g~ 1.5, 6 ~ 0.12, values that are well within the range of both
parameters.

5 Incorporating additional measurements

The previous sections described how to estimate the rain variables given the radar reflee-
tivities only While that is interesting initself, one would like to be able to account for
additional measurements, such as passive microwave brightness temperatures, to reduce the
imherent ambiguity. The Bayesian d])})IOElC}l which we have taken so far can guide us in per-
forming this data fusion. Indeed, (a]lmgl the vector of bnghtn(&s temperatures, we need to
compute the conditional density function P{({1(r) ,p(r)) for therain variables
{R(") Yo<r<rasprand 8, given a reflectivity profn]( ])( )dnd a set Of brightness temperatures
T By Bayes’s theorem, this probability is given by

PURE) Yocrera 1, 81T, p(r)) = P(1

)}0<7<7 s [ o, 7) {]f }o<r<7 s Hs 5‘]’ Ko

(29)
where Ko is the over-all normalization constant making the integral of the left-hand-side
cqual to 1. Let us now examine (29) carefully.

The first term in the right-hand-side of (29) is the probability of the brightness tem-
peratures = (11, ... Ty, . ) givenallthe other data. This figure canbe obtained using a
“forward” model to compu te the brightness temperature from the physical rain data. 1u
fact, we shall assume that we have an cflicient deterministic forward algorithm to compute
the “mean” brightness temperatures 'J] al the relevant frequencies that correspond to  a
given rain profile, along with an approximate formula giving the r.m. s. deviation ;. 10 be
expected about each of these average brightness temperatures. Given such a forward 1110(10]
we canreplace the first. probability nlthcnght hand-side Of (29) by the product of Gaussians

Go, (15 = T ) with mean I and variance 01 T'h us,
7 J
P I ogrrs it 6.007) = [T G, gutwton (15 = T 6,p(r) (30)
J

where we have made exHhicit the dependence of 1 and o on the rain data (y2, 6, p(r)).

The second term i1 the right-hand-side of (29) can be further split into the product of
two simpler terms, thanks again to Bayes’s theorem:

PHIR() Yocrgras 11,6 | p(1)) = P{R(7) }o<r<r,

0 p(r) - Py blp(r)) - Ky (31)
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In the right-hand-side of (31), the first term is exactly what our extended Kalman filter
deseribed in the carlier sections computes: the probability function for the rain rate profile,
assuming g and ¢ and the radar reflectivities are kn ow n. More precisely, our extended-
Kalman-filtering algorithm computes the first two moments of this density function. The
second term in the right-hand-side is the density function of gand é giventhe radar reflectiv -
itics. We shall approximate it with the a priori density function Py, 8) for prand §, namely
a product of two independent uniform distributions. Last, the normalization constant iy
must take onthat value whichmakesthe Icft-1]al]d-side integrateto 1.

Putting (29), (30) and (31) together, one thus finds that

PU( Y oso oo 1,817 (1) 2 PO g r it 6,00 Pt 6K T] Gy (13 Tyt 6,0(0))
], J

(32)

where the first moments of the first termon't he right are computed by the extended-Kalman-
filter described in the previous sections, and where X represents the normalization constant
Ky . K. Wearefinally ready to write down explicit expressions for the optimal estimates of
.6 and R(r) given p(r) and 7. Indeed, al weneed to do is calculate the various mcans of
(32). 1'hus, the optimal estimate /8radary passive (19) for I(rg) at any range ro is obtained by
taking the mean of f2(ro):

]A{radar—{ passiv(‘(TO) == /]{(70) ) 7) ({]{(

]\'.//Rrudar('l‘o;/l,é) (j1,6) (H Gesopr (’j'j _ j'].(ﬂ,(g’],(r)))) dpuds

where ]A{mda,(To;/z,(S) is the radar-only estimate obtained as informula (1 S). Thus, the
optimal estimation of therain rate proceeds intwo steps: first, we compute the radar-only
estimates using an efficient extended-Kah nan-filtering approach, for cach possible pair (y, 6);
next, again for each (y,6),we calculate the corresponding brightness temperatures. Finally,
at cach range oy we perform the double integration specified in (33) to estimate the rain
rate itsclf at that range.

) d{R(r)}dudd (33)

If, instead of passive microwave brightness temperatures, our additional mcasurcinent
consisted of the path-integrated attenuation (P1 A), we would use a similar algorithm to
improve our radar- only estimates and condition them further on this additional incasurement.
Indeed, inthis case, the optimnal estimate would be

]A{'Tudm‘-{ 1’1/!(7'0) ~ K. // ]A{radar(r(); Hy 6) : 7:7(/13 6) : g05 ((j - 6(7‘33 /1»6)) (1/1(16 (31)

where (7 is the measured PIA, é(rg; g, 8) the path-integrated attenuation from the top of the
rain column to the surface range r, as estimated by the extended Kalman algorithm, for
cach (y,6), and o the associated standard deviation.
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The estimates (33) and (31) can be compared with the radar-only estimate
]A{T(,,ja,.(ro) ~ K" //1},-0(1(.7»(7'0;/1,5) “ Py, é)dudé. (35)
Similarly, in cach of these three cases (racial-oll]y, radar4 passive, radar+ I'lA), one can

compare the variance of 12 i.c. the error bar that the algorithim itsell imposes on its own
estimate, inorder to decide how the ambiguity is being reduced, if at all.

6 Applications

Iigure 5 shows the graph of the “forward” function we used 0 compute the average 13.8
GHz brightness temperature 75(y, 6, p(r)), namely

~

TG, 6,p(r)) = T+ (U= 1)107 010D (1 - ¢)107 20 (36)
where ¢ = the surface emissivity ~ 0,3S, 7' =: the atmosphere (physical) temperature o~
280" 1(, {=-the surface (physical)temperature o 300° K, and where é(r,) is the estimated

integrated attenuation at the surface r=r,, which is computed by our extended-Kalman
algorithm as a function of g, 6 and the input profile p(r). For every value of ¢, carlier
calculations (Durden et al, 1 994) have quantified the expected spread of t he associated
brightness temperatures: the minimum and maximum values are shown by the dotted curves
infigure 5. We added this inherent variance inthe forward formula to the variance due to
the uncertainty o inour estimate of ¢(rs) to obtain an approximation to the n.s. deviation
o, of the brightness temperature predicted by (36).

Starting with independent uniform distributions for s over theinterval [- 0.5, +4 3.5]
and for é over [0.08, 0.23], we then used formulas (35), (34) and (33) to obtainradar- only,
radar4PIA and racial+-racliolllctcl” estimates for cach of oursample profiles consideredin
section 3. Figure 6a shows the result of the radar- only estimation (35) inthe case of profile
B. Figure 6b shows the result of the radar4 PI1A cstimation (refsixteen) assuming that the
path-integrated attenuation is the one corresponding to profile B, namely 0.695 d]], up to
anr.n.s.uncertainty of 0.1 dB, and figure 6¢ shows the estimate when the PIA uncertainty
is assumed to be 0.5 dB. Theuncertammty inthe resulting rain-rate estimates decreases then
increases accordingly. IMigure 6d shows the radar-1 radiometer estimates using (33), where
the passive microwave brightness temperatures are handled as described inthe previous
paragraph.In this case, figure 5iumplics that the uncertainty in the relation between the
brightness temperature 7y, o~ 242.5°K and the radar attenuation is relatively small. The
accuracy Of the radar+ radiometer estimates is therefore quite good, and their uncertainty
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quite small. Figures Tabed show whiat happens at higher rain rates. I igure 7a shows the
radar-only estimatesinthe case of profile C. Theran.s.unceratinty inthe estimates exceeds
H0% atrangesabove 1.5 kin, as could have been expected from the ambiguity calculations
in(Haddad et al, 1993). Figure 7b shows the improved result when one uses the radar4 PIA
estimates assuming that the path-integrated attenuation is the one corresponding to profile
C,namely 3.13 dB, up to an r.ans. uncertainty of 0.1dB again. IMigure 7c shows the estimates
when the PTA uncertainty is assumed to be 0.5 dB. The uncertainty in the resulting rai~I-rate
cstimates inereases slightly, but remains farsmaller than that of the radar- only estimates.
In fact, even at the surface range where it is largest, the r.m. s uncertainty amounts to a
reasonable 30%. Figure 7d shows the radar4 radiometer estimates. In this case, figure 5
shows that the uncertainty in the relation between the brightness temperature 7j, o~ 279° K
and the radar attenuation is quite large. The accuracy of theradar- radiometer estimates
atranges beyond about 3 km is therefore quite unsatisfactory, and their ran. s, uncertainty
is correspondingly large.

Finally, we return to the case where our radar reflectivity profile is the ARMAR TOGA-
COARY profile of figures 4abe. Figure 8a shows our radar-only algorithm s estimates. Their
associated uncertainty is unacceptably high.  Figure 8b shows the radar+Pl1 A estimates,
assuming that the path-integrated attenuation is the one estimated by comparing the surface
return with the “clear-air surface return” as explained in(Durdenet al, 1994), namely 3.9
dB, up to a postulated I s, uncertainty of 0.5 dB. 1t is most interesting to compare this
estimated profile to the one in figure 8c, obtaiyed using the radar+ radioneter algorithin with
the measured brightness temperature 7, = 254.3° K. Since the calibration of ARMAR’s
passive microwave measurements is not quite complete, we have computed the estimated
profiles corresponding to 7y, = 250°K (figure Se), and 7, = 260°K (figure 8d). A's the
measured microwave temperature decreases or increases, theestimated profile follows suit
appropriately.

IFuture work will cone.c]ltratcol]
. making the forward passive microwave calculation) more realistic,
« incorporating additional passive microwave channels,

e modcling the full covariance between g, 6 and 2 in order to reduce the ambiguities in
the radar-only model,

« andincreasing the number of variables to allow gzandé (anti hencethe drop size
distribution]) itself) to vary as a function of range.
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Iigure 8c: Radar4 radiometer rain estimates for ARMAR / TOG A-COARE profile, assuimning
1y, = 254.3°K

Iigure 8d: Radar- radiometer rain estimates for ARMAR / TOGA-COARY profile, if 73, = 250° K

IFigure 8c: Radard radiometer rain estimates for ARMAR / TOGA-COARE profile, if 7}, = 260° K
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